A GABAergic Mechanism Is Necessary for Coupling Dissociable Ventral and Dorsal Regional Oscillators within the Circadian Clock
نویسندگان
چکیده
BACKGROUND Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock of the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental light-dark cycles via the retino-hypothalamic tract, which terminates predominantly in the ventral SCN of the rat. In order to understand synchronization of the clock to the external light-dark cycle, we performed ex vivo recordings of spontaneous impulse activity in SCN slices of the rat. RESULTS We observed bimodal patterns of spontaneous impulse activity in the dorsal and ventral SCN after a 6 hr delay of the light schedule. Bisection of the SCN slice revealed a separate fast-resetting oscillator in the ventral SCN and a distinct slow-resetting oscillator in the dorsal SCN. Continuous application of the GABA(A) antagonist bicuculline yielded similar results as cut slices. Short application of bicuculline at different phases of the circadian cycle increased the electrical discharge rate in the ventral SCN but, unexpectedly, decreased activity in the dorsal SCN. CONCLUSIONS GABA transmits phase information between the ventral and dorsal SCN oscillators. GABA can act excitatory in the dorsal SCN and inhibits neurons in the ventral SCN. We hypothesize that this difference results in asymmetrical interregional coupling within the SCN, with a stronger phase-shifting effect of the ventral on the dorsal SCN than vice versa. A model is proposed that focuses on this asymmetry and on the role of GABA in phase regulation.
منابع مشابه
Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods.
Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons ...
متن کاملForced Desynchronization of Dual Circadian Oscillators within the Rat Suprachiasmatic Nucleus
The circadian clock in the suprachiasmatic nucleus of the hypothalamus (SCN) contains multiple autonomous single-cell circadian oscillators and their basic intracellular oscillatory mechanism is beginning to be identified. Less well understood is how individual SCN cells create an integrated tissue pacemaker that produces a coherent read-out to the rest of the organism. Intercellular coupling m...
متن کاملOntogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorde...
متن کاملUnique self-sustaining circadian oscillators within the brain of Drosophila melanogaster.
In Drosophila circadian rhythms persist in constant darkness (DD). The small ventral Lateral Neurons (s-LNv) mainly control the behavioral circadian rhythm in consortium with the large ventral Lateral Neurons (l-LNv) and dorsal Lateral Neurons (LNd). It is believed that the molecular oscillations of clock genes are the source of this persistent behavior. Indeed the s-LNv, LNd, Dorsal Neurons (D...
متن کاملEffect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus Ex Vivo
BACKGROUND In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plaus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005